👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Integrals With Radicals

Integrals with Radicals Calculator

Get detailed solutions to your math problems with our Integrals with Radicals step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of integrals with radicals. This solution was automatically generated by our smart calculator:

$\int\sqrt{4-x^2}dx$
2

We can solve the integral $\int\sqrt{4-x^2}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\sin\left(\theta \right)$

Differentiate both sides of the equation $x=2\sin\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(2\sin\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(2\sin\left(\theta \right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$2\frac{d}{d\theta}\left(\sin\left(\theta \right)\right)$

The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if ${f(x) = \sin(x)}$, then ${f'(x) = \cos(x)\cdot D_x(x)}$

$2\cos\left(\theta \right)$
3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\cos\left(\theta \right)d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int2\sqrt{4- 4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$

Multiply $-1$ times $4$

$\int2\sqrt{4-4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
4

Substituting in the original integral, we get

$\int2\sqrt{4-4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
5

Factor the polynomial $4-4\sin\left(\theta \right)^2$ by it's greatest common factor (GCF): $4$

$\int2\sqrt{4\left(1-\sin\left(\theta \right)^2\right)}\cos\left(\theta \right)d\theta$
6

The power of a product is equal to the product of it's factors raised to the same power

$\int2\cdot 2\sqrt{1-\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
7

Applying the trigonometric identity: $1-\sin\left(\theta \right)^2 = \cos\left(\theta \right)^2$

$\int2\cdot 2\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
8

The integral of a function times a constant ($2$) is equal to the constant times the integral of the function

$2\int\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
9

Simplify $\sqrt{\cos\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$2\int\cos\left(\theta \right)^{2\cdot \left(\frac{1}{2}\right)}\cos\left(\theta \right)d\theta$
10

Multiply the fraction and term in $2\cdot \left(\frac{1}{2}\right)$

$2\int\cos\left(\theta \right)^{\frac{2}{2}}\cos\left(\theta \right)d\theta$
11

Divide $2$ by $2$

$2\int\cos\left(\theta \right)\cos\left(\theta \right)d\theta$
12

When multiplying two powers that have the same base ($\cos\left(\theta \right)$), you can add the exponents

$2\int\cos\left(\theta \right)^2d\theta$
13

Apply the formula: $\int\cos\left(\theta \right)^2dx$$=\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)+C$, where $x=\theta $

$2\left(\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)\right)$
14

Express the variable $\theta$ in terms of the original variable $x$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}\sin\left(2\theta \right)\right)$
15

Using the sine double-angle identity: $\sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right)$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\left(\frac{1}{4}\right)\cdot 2\sin\left(\theta \right)\cos\left(\theta \right)\right)$

Multiply the fraction and term in $\left(\frac{1}{4}\right)\cdot 2\sin\left(\theta \right)\cos\left(\theta \right)$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{2\cdot 1}{4}\sin\left(\theta \right)\cos\left(\theta \right)\right)$

Multiply $2$ times $1$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{2}{4}\sin\left(\theta \right)\cos\left(\theta \right)\right)$

Divide $2$ by $4$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{2}\sin\left(\theta \right)\cos\left(\theta \right)\right)$
16

Multiply the fraction and term in $\left(\frac{1}{4}\right)\cdot 2\sin\left(\theta \right)\cos\left(\theta \right)$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{2}\sin\left(\theta \right)\cos\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{2}\frac{x}{2}\frac{\sqrt{4-x^2}}{2}\right)$

Multiplying fractions $\frac{1}{2} \times \frac{x}{2}$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{1x}{2\cdot 2}\right)$

Multiply $2$ times $2$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{1x}{4}\right)$

Any expression multiplied by $1$ is equal to itself

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{x}{4}\right)$

Multiplying fractions $\frac{x}{4} \times \frac{\sqrt{4-x^2}}{2}$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{4\cdot 2}\right)$

Multiplying fractions $\frac{1}{2} \times \frac{x}{2}$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{1x}{2\cdot 2}\right)$

Multiply $2$ times $2$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{1x}{4}\right)$

Any expression multiplied by $1$ is equal to itself

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{\sqrt{4-x^2}}{2}\frac{x}{4}\right)$

Multiply $4$ times $2$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)$
17

Express the variable $\theta$ in terms of the original variable $x$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)$
18

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)+C_0$

Solve the product $2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)$

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+2\left(\frac{x\sqrt{4-x^2}}{8}\right)+C_0$

Multiplying the fraction by $2$

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+\frac{2x\sqrt{4-x^2}}{8}+C_0$

Take $\frac{2}{8}$ out of the fraction

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Multiply the fraction and term in $2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)$

$\frac{2\cdot 1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Any expression multiplied by $1$ is equal to itself

$\frac{2}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Divide $2$ by $2$

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$
19

Expand and simplify

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Final answer to the problem

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!