Inverse trigonometric functions differentiation Calculator

Get detailed step by step solutions to your math problems with our online calculator. Sharpen your math skills with our list of difficult problems. Check out more calculators here.

Go!
1
2
3
4
5
6
7
8
9
0
x
y
(◻)
◻/◻
2

e
π
ln
log
lim
d/dx
d/dx
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Example

$\frac{d}{dx}\left(\frac{\sin\left(x\right)}{1+\cos\left(x\right)}+arctan\left(x\right)\cdot\ln\left(1+x^2\right)\right)$
2

The derivative of a sum of two functions is the sum of the derivatives of each function

$\frac{d}{dx}\left(\ln\left(x^2+1\right)arctan\left(x\right)\right)+\frac{d}{dx}\left(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\right)$
3

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=arctan\left(x\right)$ and $g=\ln\left(x^2+1\right)$

$\frac{d}{dx}\left(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\right)+\frac{d}{dx}\left(\ln\left(x^2+1\right)\right)arctan\left(x\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
4

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{d}{dx}\left(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\right)+\frac{1}{x^2+1}arctan\left(x\right)\frac{d}{dx}\left(x^2+1\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
5

Applying the quotient rule which states that if $f(x)$ and $g(x)$ are functions and $h(x)$ is the function defined by ${\displaystyle h(x) = \frac{f(x)}{g(x)}}$, where ${g(x) \neq 0}$, then ${\displaystyle h'(x) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{g(x)^2}}$

$\frac{\left(\cos\left(x\right)+1\right)\frac{d}{dx}\left(\sin\left(x\right)\right)-\frac{d}{dx}\left(\cos\left(x\right)+1\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\frac{1}{x^2+1}arctan\left(x\right)\frac{d}{dx}\left(x^2+1\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
6

The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if ${f(x) = \sin(x)}$, then ${f'(x) = \cos(x)\cdot D_x(x)}$

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\frac{d}{dx}\left(\cos\left(x\right)+1\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\frac{1}{x^2+1}arctan\left(x\right)\frac{d}{dx}\left(x^2+1\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
7

The derivative of a sum of two functions is the sum of the derivatives of each function

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(\frac{d}{dx}\left(\cos\left(x\right)\right)+\frac{d}{dx}\left(1\right)\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\frac{1}{x^2+1}arctan\left(x\right)\left(\frac{d}{dx}\left(x^2\right)+\frac{d}{dx}\left(1\right)\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
8

The derivative of the constant function is equal to zero

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(\frac{d}{dx}\left(\cos\left(x\right)\right)+0\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\frac{1}{x^2+1}arctan\left(x\right)\left(\frac{d}{dx}\left(x^2\right)+0\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
9

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(\frac{d}{dx}\left(\cos\left(x\right)\right)+0\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\left(2x+0\right)\frac{1}{x^2+1}arctan\left(x\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
10

The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if $f(x) = \cos(x)$, then $f'(x) = -\sin(x)\cdot D_x(x)$

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(0-\sin\left(x\right)\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\left(2x+0\right)\frac{1}{x^2+1}arctan\left(x\right)+\ln\left(x^2+1\right)\frac{d}{dx}\left(arctan\left(x\right)\right)$
11

Taking the derivative of arctangent

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(0-\sin\left(x\right)\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\left(2x+0\right)\frac{1}{x^2+1}arctan\left(x\right)+\frac{1}{x^2+1}\ln\left(x^2+1\right)\frac{d}{dx}\left(x\right)$
12

The derivative of the linear function is equal to $1$

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-\left(0-\sin\left(x\right)\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+\left(2x+0\right)\frac{1}{x^2+1}arctan\left(x\right)+1\left(\frac{1}{x^2+1}\right)\ln\left(x^2+1\right)$
13

$x+0=x$, where $x$ is any expression

$\frac{\left(\cos\left(x\right)+1\right)\cos\left(x\right)-1\left(-1\right)\sin\left(x\right)\sin\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+2x\frac{1}{x^2+1}arctan\left(x\right)+1\left(\frac{1}{x^2+1}\right)\ln\left(x^2+1\right)$
14

Multiply $-1$ times $-1$

$\frac{1\sin\left(x\right)\sin\left(x\right)+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+2x\frac{1}{x^2+1}arctan\left(x\right)+1\left(\frac{1}{x^2+1}\right)\ln\left(x^2+1\right)$
15

Any expression multiplied by $1$ is equal to itself

$\frac{\sin\left(x\right)\sin\left(x\right)+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+2x\frac{1}{x^2+1}arctan\left(x\right)+\frac{1}{x^2+1}\ln\left(x^2+1\right)$
16

When multiplying exponents with same base you can add the exponents

$\frac{\sin\left(x\right)^2+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+2x\frac{1}{x^2+1}arctan\left(x\right)+\frac{1}{x^2+1}\ln\left(x^2+1\right)$
17

Apply the formula: $a\frac{1}{x}$$=\frac{a}{x}$, where $a=2$ and $x=x^2+1$

$\frac{\sin\left(x\right)^2+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+x\frac{2}{x^2+1}arctan\left(x\right)+\frac{1}{x^2+1}\ln\left(x^2+1\right)$
18

Using the power rule of logarithms

$\frac{\sin\left(x\right)^2+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+x\frac{2}{x^2+1}arctan\left(x\right)+\ln\left(\left(x^2+1\right)^{\left(\frac{1}{x^2+1}\right)}\right)$
19

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\frac{\sin\left(x\right)^2+\left(\cos\left(x\right)+1\right)\cos\left(x\right)}{\left(\cos\left(x\right)+1\right)^2}+x\frac{2}{x^2+1}arctan\left(x\right)+\frac{1}{x^2+1}\ln\left(x^2+1\right)$

Struggling with math?

Access detailed step by step solutions to millions of problems, growing every day!