Limits by L'Hôpital's rule Calculator

Get detailed step by step solutions to your math problems with our online calculator. Sharpen your math skills with our list of difficult problems. Check out more calculators here.

Go!
1
2
3
4
5
6
7
8
9
0
x
y
(◻)
◻/◻
2

e
π
ln
log
lim
d/dx
d/dx
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Example

$\lim_{x\to0}\left(\frac{x^3\cot\left(x\right)}{1-\cos\left(x\right)}\right)$
2

As the limit results in indeterminate form, we can apply L'Hôpital's rule

$\lim_{x\to0}\left(\frac{\frac{d}{dx}\left(x^3\cot\left(x\right)\right)}{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}\right)$
3

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=x^3$ and $g=\cot\left(x\right)$

$\lim_{x\to0}\left(\frac{x^3\frac{d}{dx}\left(\cot\left(x\right)\right)+\cot\left(x\right)\frac{d}{dx}\left(x^3\right)}{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}\right)$
4

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\lim_{x\to0}\left(\frac{x^3\frac{d}{dx}\left(\cot\left(x\right)\right)+3x^{2}\cot\left(x\right)}{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}\right)$
5

Taking the derivative of cotangent

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}\right)$
6

The derivative of a sum of two functions is the sum of the derivatives of each function

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{\frac{d}{dx}\left(-\cos\left(x\right)\right)+\frac{d}{dx}\left(1\right)}\right)$
7

The derivative of the constant function is equal to zero

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{\frac{d}{dx}\left(-\cos\left(x\right)\right)}\right)$
8

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{-\frac{d}{dx}\left(\cos\left(x\right)\right)}\right)$
9

The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if $f(x) = \cos(x)$, then $f'(x) = -\sin(x)\cdot D_x(x)$

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{-1\left(-1\right)\sin\left(x\right)}\right)$
10

Multiply $-1$ times $-1$

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{1\sin\left(x\right)}\right)$
11

Any expression multiplied by $1$ is equal to itself

$\lim_{x\to0}\left(\frac{3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2}{\sin\left(x\right)}\right)$
12

As the limit results in indeterminate form, we can apply L'Hôpital's rule

$\lim_{x\to0}\left(\frac{\frac{d}{dx}\left(3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2\right)}{\frac{d}{dx}\left(\sin\left(x\right)\right)}\right)$
13

The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if ${f(x) = \sin(x)}$, then ${f'(x) = \cos(x)\cdot D_x(x)}$

$\lim_{x\to0}\left(\frac{\frac{d}{dx}\left(3x^{2}\cot\left(x\right)-x^3\csc\left(x\right)^2\right)}{\cos\left(x\right)}\right)$
14

The derivative of a sum of two functions is the sum of the derivatives of each function

$\lim_{x\to0}\left(\frac{\frac{d}{dx}\left(-x^3\csc\left(x\right)^2\right)+\frac{d}{dx}\left(3x^{2}\cot\left(x\right)\right)}{\cos\left(x\right)}\right)$
15

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$\lim_{x\to0}\left(\frac{3\frac{d}{dx}\left(x^{2}\cot\left(x\right)\right)-\frac{d}{dx}\left(x^3\csc\left(x\right)^2\right)}{\cos\left(x\right)}\right)$
16

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=\csc\left(x\right)^2$ and $g=x^3$

$\lim_{x\to0}\left(\frac{3\frac{d}{dx}\left(x^{2}\cot\left(x\right)\right)-\left(\frac{d}{dx}\left(x^3\right)\csc\left(x\right)^2+x^3\frac{d}{dx}\left(\csc\left(x\right)^2\right)\right)}{\cos\left(x\right)}\right)$
17

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=x^{2}$ and $g=\cot\left(x\right)$

$\lim_{x\to0}\left(\frac{3\left(x^{2}\cdot\frac{d}{dx}\left(\cot\left(x\right)\right)+\cot\left(x\right)\frac{d}{dx}\left(x^{2}\right)\right)-\left(\frac{d}{dx}\left(x^3\right)\csc\left(x\right)^2+x^3\frac{d}{dx}\left(\csc\left(x\right)^2\right)\right)}{\cos\left(x\right)}\right)$
18

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\lim_{x\to0}\left(\frac{3\left(x^{2}\cdot\frac{d}{dx}\left(\cot\left(x\right)\right)+2x\cot\left(x\right)\right)-\left(3x^{2}\csc\left(x\right)^2+x^3\frac{d}{dx}\left(\csc\left(x\right)^2\right)\right)}{\cos\left(x\right)}\right)$
19

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\lim_{x\to0}\left(\frac{3\left(x^{2}\cdot\frac{d}{dx}\left(\cot\left(x\right)\right)+2x\cot\left(x\right)\right)-\left(3x^{2}\csc\left(x\right)^2+2x^3\frac{d}{dx}\left(\csc\left(x\right)\right)\csc\left(x\right)\right)}{\cos\left(x\right)}\right)$
20

Taking the derivative of cotangent

$\lim_{x\to0}\left(\frac{3\left(2x\cot\left(x\right)-x^{2}\csc\left(x\right)^2\right)-\left(3x^{2}\csc\left(x\right)^2+2x^3\frac{d}{dx}\left(\csc\left(x\right)\right)\csc\left(x\right)\right)}{\cos\left(x\right)}\right)$
21

Taking the derivative of cosecant

$\lim_{x\to0}\left(\frac{3\left(2x\cot\left(x\right)-x^{2}\csc\left(x\right)^2\right)-\left(3x^{2}\csc\left(x\right)^2-2x^3\csc\left(x\right)\cot\left(x\right)\csc\left(x\right)\right)}{\cos\left(x\right)}\right)$
22

When multiplying exponents with same base you can add the exponents

$\lim_{x\to0}\left(\frac{3\left(2x\cot\left(x\right)-x^{2}\csc\left(x\right)^2\right)-\left(3x^{2}\csc\left(x\right)^2-2x^3\cot\left(x\right)\csc\left(x\right)^2\right)}{\cos\left(x\right)}\right)$
23

Evaluating the limit when $x$ tends to $0$

$\frac{\left(\csc\left(0\right)^2\cdot 0^{2}\cdot 3+0^3\cdot \cot\left(0\right)\left(-2\right)\cdot \csc\left(0\right)^2\right)\left(-1\right)+\left(0^{2}\cdot \csc\left(0\right)^2\left(-1\right)+\cot\left(0\right)\cdot 0\cdot 2\right)\cdot 3}{\cos\left(0\right)}$
24

Simplifying

$0$

Struggling with math?

Access detailed step by step solutions to millions of problems, growing every day!