1. calculators
  2. Integration By Trigonometric Substitution

Integration by trigonometric substitution Calculator

Get detailed solutions to your math problems with our Integration by trigonometric substitution step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Solved example of integration by trigonometric substitution

$\int\sqrt{x^2+4}dx$
2

We can solve the integral $\int\sqrt{x^2+4}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\tan\left(\theta \right)$

The derivative of a function multiplied by a constant ($2$) is equal to the constant times the derivative of the function

$2\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$2\sec\left(\theta \right)^2\frac{d}{d\theta}\left(\theta \right)$

The derivative of the linear function is equal to $1$

$2\sec\left(\theta \right)^2$
3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\sec\left(\theta \right)^2d\theta$
4

Substituting in the original integral, we get

$\int2\sqrt{4\tan\left(\theta \right)^2+4}\sec\left(\theta \right)^2d\theta$
5

Factor by the greatest common divisor $4$

$\int2\sqrt{4\left(\tan\left(\theta \right)^2+1\right)}\sec\left(\theta \right)^2d\theta$
6

The power of a product is equal to the product of it's factors raised to the same power

$\int4\sqrt{\tan\left(\theta \right)^2+1}\sec\left(\theta \right)^2d\theta$
7

Applying the trigonometric identity: $\tan(x)^2+1=\sec(x)^2$

$\int4\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$
8

The integral of a constant by a function is equal to the constant multiplied by the integral of the function

$4\int\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$
9

When multiplying exponents with same base you can add the exponents: $4\sec\left(\theta \right)\sec\left(\theta \right)^2$

$4\int\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$
10

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)\sec\left(\theta \right)^2$

$4\int\sec\left(\theta \right)^{3}d\theta$

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)^{\left(3-2\right)}d\theta$

Subtract the values $3$ and $-2$

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)^{1}d\theta$

Any expression to the power of $1$ is equal to that same expression

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$
11

Rewrite $\sec\left(\theta \right)^{3}$ as the product of two secants

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$
12

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

Taking the derivative of secant

$\sec\left(\theta \right)\tan\left(\theta \right)$
13

First, identify $u$ and calculate $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$
14

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$
15

Solve the integral

$v=\int\sec\left(\theta \right)^2d\theta$
16

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$

When multiplying two powers that have the same base ($\tan\left(\theta \right)$), you can add the exponents

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$
17

Now replace the values of $u$, $du$ and $v$ in the last formula

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$
18

Multiplying polynomials $4$ and $\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Apply the formula: $\int\sec\left(x\right)\tan\left(x\right)^2dx$$=\int\sec\left(x\right)^3dx-\int\sec\left(x\right)dx$, where $x=\theta $

$-4\left(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta\right)$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-4\left(\int\sec\left(\theta \right)^3d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$

Simplify the integral $\int\sec\left(\theta \right)^3d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$

Apply the formula: $\sin\left(x\right)\sec\left(x\right)^n$$=\tan\left(x\right)\sec\left(x\right)^{\left(n-1\right)}$, where $x=\theta $ and $n=2$

$-4\left(\frac{\tan\left(\theta \right)\sec\left(\theta \right)}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-4\left(\frac{\tan\left(\theta \right)\sec\left(\theta \right)}{2}+\frac{1}{2}\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$

Adding $\frac{1}{2}\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|$ and $-1\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|$

$-4\left(-\frac{1}{2}\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|+\frac{\tan\left(\theta \right)\sec\left(\theta \right)}{2}\right)$

Express the variable $\theta$ in terms of the original variable $x$

$-4\left(-\frac{1}{2}\ln\left|\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right|+\frac{\frac{x}{2}\frac{\sqrt{x^2+4}}{2}}{2}\right)$

Multiplying fractions

$-4\left(-\frac{1}{2}\ln\left|\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right|+\frac{x\sqrt{x^2+4}}{8}\right)$

Add fraction's numerators with common denominators: $\frac{\sqrt{x^2+4}}{2}$ and $\frac{x}{2}$

$-4\left(-\frac{1}{2}\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|+\frac{x\sqrt{x^2+4}}{8}\right)$

Solve the product $-4\left(-\frac{1}{2}\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|+\frac{x\sqrt{x^2+4}}{8}\right)$

$2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
19

The integral $-4\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$ results in: $2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$

$2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
20

Gather the results of all integrals

$4\tan\left(\theta \right)\sec\left(\theta \right)+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-4\left(\frac{x\sqrt{x^2+4}}{8}\right)$
21

Simplify the fraction $-4\left(\frac{x\sqrt{x^2+4}}{8}\right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-\frac{1}{2}x\sqrt{x^2+4}$
22

Express the variable $\theta$ in terms of the original variable $x$

$4\left(\frac{x}{2}\right)\left(\frac{\sqrt{x^2+4}}{2}\right)+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-\frac{1}{2}x\sqrt{x^2+4}$
23

Multiplying the fraction by $4$

$\frac{4x}{2}\frac{\sqrt{x^2+4}}{2}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-\frac{1}{2}x\sqrt{x^2+4}$
24

Multiplying fractions

$\frac{4x\sqrt{x^2+4}}{4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-\frac{1}{2}x\sqrt{x^2+4}$

Simplify the fraction by $4$

$x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|-\frac{1}{2}x\sqrt{x^2+4}$

Adding $-\frac{1}{2}x\sqrt{x^2+4}$ and $x\sqrt{x^2+4}$

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
25

Simplifying

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
26

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|+C_0$

Final Answer

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|+C_0$

Struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!