👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Integration By Trigonometric Substitution

Integration by Trigonometric Substitution Calculator

Get detailed solutions to your math problems with our Integration by Trigonometric Substitution step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Math mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Solved example of integration by trigonometric substitution

$\int\sqrt{x^2+4}dx$
2

We can solve the integral $\int\sqrt{x^2+4}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\tan\left(\theta \right)$

Differentiate both sides of the equation $x=2\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$2\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$2\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)^2$

The derivative of the linear function is equal to $1$

$2\sec\left(\theta \right)^2$
3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\sec\left(\theta \right)^2d\theta$

4

Substituting in the original integral, we get

$\int2\sqrt{4\tan\left(\theta \right)^2+4}\sec\left(\theta \right)^2d\theta$
5

Factor the polynomial $4\tan\left(\theta \right)^2+4$ by it's greatest common factor (GCF): $4$

$\int2\sqrt{4\left(\tan\left(\theta \right)^2+1\right)}\sec\left(\theta \right)^2d\theta$
6

The power of a product is equal to the product of it's factors raised to the same power

$\int4\sqrt{\tan\left(\theta \right)^2+1}\sec\left(\theta \right)^2d\theta$
7

Applying the trigonometric identity: $1+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2$

$\int4\sqrt{\sec\left(\theta \right)^2}\sec\left(\theta \right)^2d\theta$
8

The integral of a function times a constant ($4$) is equal to the constant times the integral of the function

$4\int\sqrt{\sec\left(\theta \right)^2}\sec\left(\theta \right)^2d\theta$
9

Simplify $\sqrt{\sec\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$4\int\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$
10

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)\sec\left(\theta \right)^2$

$4\int\sec\left(\theta \right)^{3}d\theta$
11

Rewrite $\sec\left(\theta \right)^{3}$ as the product of two secants

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$
12

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

Taking the derivative of secant function: $\frac{d}{dx}\left(\sec(x)\right)=\sec(x)\cdot\tan(x)\cdot D_x(x)$

$\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)\tan\left(\theta \right)$

The derivative of the linear function is equal to $1$

$\sec\left(\theta \right)\tan\left(\theta \right)$
13

First, identify $u$ and calculate $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$
14

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$
15

Solve the integral

$v=\int\sec\left(\theta \right)^2d\theta$
16

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$

When multiplying two powers that have the same base ($\tan\left(\theta \right)$), you can add the exponents

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$
17

Now replace the values of $u$, $du$ and $v$ in the last formula

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$
18

Multiply the single term $4$ by each term of the polynomial $\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Applying the trigonometric identity: $\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2-1$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$
19

We identify that the integral has the form $\int\tan^m(x)\sec^n(x)dx$. If $n$ is odd and $m$ is even, then we need to express everything in terms of secant, expand and integrate each function separately

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$\int\left(\sec\left(\theta \right)^2\sec\left(\theta \right)-\sec\left(\theta \right)\right)$

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)^2\sec\left(\theta \right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$
20

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$
21

Expand the integral $\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Express the variable $\theta$ in terms of the original variable $x$

$4\frac{x}{2}\frac{\sqrt{x^2+4}}{2}-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Multiplying the fraction by $4\left(\frac{\sqrt{x^2+4}}{2}\right)$

$\sqrt{x^2+4}x-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$
22

Express the variable $\theta$ in terms of the original variable $x$

$\sqrt{x^2+4}x-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Simplify the integral $\int\sec\left(\theta \right)^{3}d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)$

Solve the product $-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)$

$-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)-2\int\sec\left(\theta \right)d\theta$

Simplify the fraction $-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)$

$-2\sin\left(\theta \right)\sec\left(\theta \right)^{2}-2\int\sec\left(\theta \right)d\theta$

Express the variable $\theta$ in terms of the original variable $x$

$-\frac{1}{2}\sqrt{x^2+4}x-2\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
23

The integral $-4\int\sec\left(\theta \right)^{3}d\theta$ results in: $-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
24

Gather the results of all integrals

$\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)-\frac{1}{2}\sqrt{x^2+4}x-4\int-\sec\left(\theta \right)d\theta$
25

Combining like terms $\sqrt{x^2+4}x$ and $-\frac{1}{2}\sqrt{x^2+4}x$

$\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)-4\int-\sec\left(\theta \right)d\theta$

The integral of a function times a constant ($-1$) is equal to the constant times the integral of the function

$4\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$4\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
26

The integral $-4\int-\sec\left(\theta \right)d\theta$ results in: $4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
27

Gather the results of all integrals

$\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)+4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
28

Combining like terms $-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$ and $4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$
29

The least common multiple (LCM) of a sum of algebraic fractions consists of the product of the common factors with the greatest exponent, and the uncommon factors

$L.C.M.=2$
30

Combine and simplify all terms in the same fraction with common denominator $2$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)$
31

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)+C_0$
32

Simplify the expression by applying logarithm properties

$2\ln\left(\sqrt{x^2+4}+x\right)+C_1+\frac{1}{2}\sqrt{x^2+4}x$

Final Answer

$2\ln\left(\sqrt{x^2+4}+x\right)+C_1+\frac{1}{2}\sqrt{x^2+4}x$

Struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!