👉 Try now NerdPal! Our new math app on iOS and Android

Find the integral $\int\frac{1}{\left(x^2-9\right)^2}dx$

Step-by-step Solution

Go!
Math mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final Answer

$\frac{-1}{36\left(x+3\right)}+\frac{-1}{36\left(x-3\right)}+\frac{1}{126}\ln\left(x+3\right)-\frac{4}{441}\ln\left(x-3\right)+C_0$
Got another answer? Verify it here!

Step-by-step Solution

Specify the solving method

1

Factor the difference of squares $\left(x^2-9\right)$ as the product of two conjugated binomials

$\int\frac{1}{\left(x+3\right)^2\left(x-3\right)^2}dx$
2

Rewrite the fraction $\frac{1}{\left(x+3\right)^2\left(x-3\right)^2}$ in $4$ simpler fractions using partial fraction decomposition

$\frac{1}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{A}{\left(x+3\right)^2}+\frac{B}{\left(x-3\right)^2}+\frac{C}{x+3}+\frac{D}{x-3}$
3

Find the values for the unknown coefficients: $A, B, C, D$. The first step is to multiply both sides of the equation from the previous step by $\left(x+3\right)^2\left(x-3\right)^2$

$1=\left(x+3\right)^2\left(x-3\right)^2\left(\frac{A}{\left(x+3\right)^2}+\frac{B}{\left(x-3\right)^2}+\frac{C}{x+3}+\frac{D}{x-3}\right)$
4

Multiplying polynomials

$1=\frac{\left(x+3\right)^2\left(x-3\right)^2A}{\left(x+3\right)^2}+\frac{\left(x+3\right)^2\left(x-3\right)^2B}{\left(x-3\right)^2}+\frac{\left(x+3\right)^2\left(x-3\right)^2C}{x+3}+\frac{\left(x+3\right)^2\left(x-3\right)^2D}{x-3}$
5

Simplifying

$1=\left(x-3\right)^2A+\left(x+3\right)^2B+\left(x+3\right)\left(x-3\right)^2C+\left(x+3\right)^2\left(x-3\right)D$
6

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}1=36A&\:\:\:\:\:\:\:(x=-3) \\ 1=36B&\:\:\:\:\:\:\:(x=3) \\ 1=A+49B+7C+49D&\:\:\:\:\:\:\:(x=4) \\ 1=49A+B-49C-7D&\:\:\:\:\:\:\:(x=-4)\end{matrix}$
7

Proceed to solve the system of linear equations

$\begin{matrix}36A & + & 0B & + & 0C & + & 0D & =1 \\ 0A & + & 36B & + & 0C & + & 0D & =1 \\ 1A & + & 49B & + & 7C & + & 49D & =1 \\ 49A & + & 1B & - & 49C & + & 0D & =1\end{matrix}$
8

Rewrite as a coefficient matrix

$\left(\begin{matrix}36 & 0 & 0 & 0 & 1 \\ 0 & 36 & 0 & 0 & 1 \\ 1 & 49 & 7 & 49 & 1 \\ 49 & 1 & -49 & 0 & 1\end{matrix}\right)$
9

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & 0 & 0 & \frac{1}{36} \\ 0 & 1 & 0 & 0 & \frac{1}{36} \\ 0 & 0 & 1 & 0 & \frac{1}{126} \\ 0 & 0 & 0 & 1 & -\frac{4}{441}\end{matrix}\right)$
10

The integral of $\frac{1}{\left(x+3\right)^2\left(x-3\right)^2}$ in decomposed fraction equals

$\int\left(\frac{1}{36\left(x+3\right)^2}+\frac{1}{36\left(x-3\right)^2}+\frac{\frac{1}{126}}{x+3}+\frac{-\frac{4}{441}}{x-3}\right)dx$
11

Expand the integral $\int\left(\frac{1}{36\left(x+3\right)^2}+\frac{1}{36\left(x-3\right)^2}+\frac{\frac{1}{126}}{x+3}+\frac{-\frac{4}{441}}{x-3}\right)dx$ into $4$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{36\left(x+3\right)^2}dx+\int\frac{1}{36\left(x-3\right)^2}dx+\int\frac{\frac{1}{126}}{x+3}dx+\int\frac{-\frac{4}{441}}{x-3}dx$
12

We can solve the integral $\int\frac{1}{36\left(x+3\right)^2}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+3$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+3$
13

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=dx$
14

Substituting $u$ and $dx$ in the integral and simplify

$\frac{1}{36}\int\frac{1}{u^2}du+\int\frac{1}{36\left(x-3\right)^2}dx+\int\frac{\frac{1}{126}}{x+3}dx+\int\frac{-\frac{4}{441}}{x-3}dx$
15

The integral $\frac{1}{36}\int\frac{1}{u^2}du$ results in: $\frac{-1}{36\left(x+3\right)}$

$\frac{-1}{36\left(x+3\right)}$
16

The integral $\int\frac{1}{36\left(x-3\right)^2}dx$ results in: $\frac{-1}{36\left(x-3\right)}$

$\frac{-1}{36\left(x-3\right)}$
17

The integral $\int\frac{\frac{1}{126}}{x+3}dx$ results in: $\frac{1}{126}\ln\left(x+3\right)$

$\frac{1}{126}\ln\left(x+3\right)$
18

The integral $\int\frac{-\frac{4}{441}}{x-3}dx$ results in: $-\frac{4}{441}\ln\left(x-3\right)$

$-\frac{4}{441}\ln\left(x-3\right)$
19

Gather the results of all integrals

$\frac{-1}{36\left(x+3\right)}+\frac{-1}{36\left(x-3\right)}+\frac{1}{126}\ln\left(x+3\right)-\frac{4}{441}\ln\left(x-3\right)$
20

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{-1}{36\left(x+3\right)}+\frac{-1}{36\left(x-3\right)}+\frac{1}{126}\ln\left(x+3\right)-\frac{4}{441}\ln\left(x-3\right)+C_0$

Final Answer

$\frac{-1}{36\left(x+3\right)}+\frac{-1}{36\left(x-3\right)}+\frac{1}{126}\ln\left(x+3\right)-\frac{4}{441}\ln\left(x-3\right)+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Solve integral of (1/((x^2-9)^2))dx using basic integralsSolve integral of (1/((x^2-9)^2))dx using u-substitutionSolve integral of (1/((x^2-9)^2))dx using integration by partsSolve integral of (1/((x^2-9)^2))dx using trigonometric substitution

Give us your feedback!

Function Plot

Plotting: $\frac{-1}{36\left(x+3\right)}+\frac{-1}{36\left(x-3\right)}+\frac{1}{126}\ln\left(x+3\right)-\frac{4}{441}\ln\left(x-3\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Integrals by Partial Fraction Expansion

The partial fraction decomposition or partial fraction expansion of a rational function is the operation that consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

Used Formulas

7. See formulas

Your Math & Physics Tutor. Powered by AI

Available 24/7, 365.

Unlimited step-by-step math solutions. No ads.

Includes multiple solving methods.

Support for more than 100 math topics.

Premium access on our iOS and Android apps as well.

20% discount on online tutoring.

Choose your subscription plan:
Have a promo code?
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.
Create an Account