Step-by-step Solution

Find the integral $\int\frac{x}{x^2-1}dx$

Go!
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final Answer

$\ln\left(\sqrt{x^2-1}\right)+C_0$
Got a different answer? Try our new Answer Assistant!

Step-by-step Solution

Problem to solve:

$\int\frac{x}{x^2-1}dx$

Choose the solving method

1

We can solve the integral $\int\frac{x}{x^2-1}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\sec\left(\theta \right)$

Differentiate both sides of the equation $x=\sec\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(\sec\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\sec\left(\theta \right)\right)$

Taking the derivative of secant function: $\frac{d}{dx}\left(\sec(x)\right)=\sec(x)\cdot\tan(x)\cdot D_x(x)$

$\sec\left(\theta \right)\tan\left(\theta \right)$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\sec\left(\theta \right)\tan\left(\theta \right)d\theta$
3

Substituting in the original integral, we get

$\int\frac{\sec\left(\theta \right)^2\tan\left(\theta \right)}{\sec\left(\theta \right)^2-1}d\theta$
4

Apply the trigonometric identity: $\sec\left(x\right)^2-1$$=\tan\left(x\right)^2$, where $x=\theta $

$\int\frac{\sec\left(\theta \right)^2\tan\left(\theta \right)}{\tan\left(\theta \right)^2}d\theta$
5

Simplify the fraction by $\tan\left(\theta \right)$

$\int\frac{\sec\left(\theta \right)^2}{\tan\left(\theta \right)}d\theta$
6

We can solve the integral $\int\frac{\sec\left(\theta \right)^2}{\tan\left(\theta \right)}d\theta$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $\tan\left(\theta \right)$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=\tan\left(\theta \right)$

Differentiate both sides of the equation $u=\tan\left(\theta \right)$

$du=\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$\sec\left(\theta \right)^2\frac{d}{d\theta}\left(\theta \right)$

The derivative of the linear function is equal to $1$

$\sec\left(\theta \right)^2$
7

Now, in order to rewrite $d\theta$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=\sec\left(\theta \right)^2d\theta$
8

Isolate $d\theta$ in the previous equation

$\frac{du}{\sec\left(\theta \right)^2}=d\theta$

Simplify the fraction $\frac{\frac{\sec\left(\theta \right)^2}{u}}{\sec\left(\theta \right)^2}$ by $\sec\left(\theta \right)^2$

$\int\frac{1}{u}du$
9

Substituting $u$ and $d\theta$ in the integral and simplify

$\int\frac{1}{u}du$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$1\ln\left(u\right)$

Any expression multiplied by $1$ is equal to itself

$\ln\left(u\right)$
10

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left(u\right)$

$\ln\left(\tan\left(\theta \right)\right)$
11

Replace $u$ with the value that we assigned to it in the beginning: $\tan\left(\theta \right)$

$\ln\left(\tan\left(\theta \right)\right)$
12

Express the variable $\theta$ in terms of the original variable $x$

$\ln\left(\sqrt{x^2-1}\right)$
13

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\ln\left(\sqrt{x^2-1}\right)+C_0$

Final Answer

$\ln\left(\sqrt{x^2-1}\right)+C_0$
SnapXam A2
Answer Assistant

beta
Got another answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Tips on how to improve your answer: