ðŸ‘‰ Try now NerdPal! Our new math app on iOS and Android

# Solve the trigonometric integral $\int\csc\left(zx\right)dx$

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

##  Final answer to the problem

$\frac{-\ln\left|\csc\left(zx\right)+\cot\left(zx\right)\right|}{z}+C_0$
Got another answer? Verify it here!

##  Step-by-step Solution 

How should I solve this problem?

• Choose an option
• Integrate by partial fractions
• Integrate by substitution
• Integrate by parts
• Integrate using tabular integration
• Integrate by trigonometric substitution
• Weierstrass Substitution
• Integrate using trigonometric identities
• Integrate using basic integrals
• Product of Binomials with Common Term
Can't find a method? Tell us so we can add it.
1

We can solve the integral $\int\csc\left(zx\right)dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $zx$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=zx$

Learn how to solve implicit differentiation problems step by step online.

$u=zx$

Learn how to solve implicit differentiation problems step by step online. Solve the trigonometric integral int(csc(zx))dx. We can solve the integral \int\csc\left(zx\right)dx by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it u), which when substituted makes the integral easier. We see that zx it's a good candidate for substitution. Let's define a variable u and assign it to the choosen part. Now, in order to rewrite dx in terms of du, we need to find the derivative of u. We need to calculate du, we can do that by deriving the equation above. Isolate dx in the previous equation. Substituting u and dx in the integral and simplify.

##  Final answer to the problem

$\frac{-\ln\left|\csc\left(zx\right)+\cot\left(zx\right)\right|}{z}+C_0$

##  Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

SnapXam A2

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

###  Main Topic: Implicit Differentiation

Implicit differentiation makes use of the chain rule to differentiate implicitly defined functions. For differentiating an implicit function y(x), defined by an equation R(x, y) = 0, it is not generally possible to solve it explicitly for y(x) and then differentiate. Instead, one can differentiate R(x, y) with respect to x and y and then solve a linear equation in dy/dx for getting explicitly the derivative in terms of x and y.