Find the limit of $\frac{1-\cos\left(x\right)}{x^2}$ as $x$ approaches 0

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{2}$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Choose an option
  • Solve using L'Hôpital's rule
  • Solve without using l'Hôpital
  • Solve using limit properties
  • Solve using direct substitution
  • Solve the limit using factorization
  • Solve the limit using rationalization
  • Integrate by partial fractions
  • Product of Binomials with Common Term
  • FOIL Method
  • Load more...
Can't find a method? Tell us so we can add it.
1

If we directly evaluate the limit $\lim_{x\to0}\left(\frac{1-\cos\left(x\right)}{x^2}\right)$ as $x$ tends to $0$, we can see that it gives us an indeterminate form

$\frac{0}{0}$
2

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

$\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}{\frac{d}{dx}\left(x^2\right)}\right)$
3

After deriving both the numerator and denominator, and simplifying, the limit results in

$\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right)$
4

If we directly evaluate the limit $\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right)$ as $x$ tends to $0$, we can see that it gives us an indeterminate form

$\frac{0}{0}$
5

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

$\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(\sin\left(x\right)\right)}{\frac{d}{dx}\left(2x\right)}\right)$
6

After deriving both the numerator and denominator, and simplifying, the limit results in

$\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right)$
7

Evaluate the limit $\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right)$ by replacing all occurrences of $x$ by $0$

$\frac{\cos\left(0\right)}{2}$
8

The cosine of $0$ equals $1$

$\frac{1}{2}$

Final answer to the problem

$\frac{1}{2}$

Exact Numeric Answer

$0.5$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1-\cos\left(x\right)}{x^2}$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Your Personal Math Tutor. Powered by AI

Available 24/7, 365.

Complete step-by-step math solutions. No ads.

Includes multiple solving methods.

Download complete solutions and keep them forever.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account