# Power series Calculator

## Get detailed solutions to your math problems with our Power series step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

### Difficult Problems

1

Solved example of power series

$\int\frac{\sin\left(x\right)}{x}dx$
2

Rewrite the function $\sin\left(x\right)$ as it's representation in Maclaurin series expansion

$\int\frac{\sum_{n=0}^{\infty } x^{\left(2n+1\right)}\frac{{\left(-1\right)}^n}{\left(2n+1\right)!}}{x}dx$
3

Bring the denominator $x$ inside the power serie

$\int\sum_{n=0}^{\infty } \frac{x^{\left(2n+1\right)}{\left(-1\right)}^n}{x\left(2n+1\right)!}dx$
4

Simplify the fraction by $x$

$\int\sum_{n=0}^{\infty } \frac{x^{2n}{\left(-1\right)}^n}{\left(2n+1\right)!}dx$
5

We can rewrite the power series as the following

$\sum_{n=0}^{\infty } \frac{1}{\left(2n+1\right)!}\int x^{2n}{\left(-1\right)}^ndx$
6

The integral of a constant by a function is equal to the constant multiplied by the integral of the function

$\sum_{n=0}^{\infty } \frac{{\left(-1\right)}^n}{\left(2n+1\right)!}\int x^{2n}dx$
7

Apply the power rule for integration, $\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}$, where $n$ represents a constant function

$\sum_{n=0}^{\infty } \frac{{\left(-1\right)}^n}{\left(2n+1\right)!}\frac{x^{\left(2n+1\right)}}{2n+1}$
8

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\sum_{n=0}^{\infty } \frac{{\left(-1\right)}^n}{\left(2n+1\right)!}\frac{x^{\left(2n+1\right)}}{2n+1}+C_0$

$\sum_{n=0}^{\infty } \frac{{\left(-1\right)}^n}{\left(2n+1\right)!}\frac{x^{\left(2n+1\right)}}{2n+1}+C_0$