👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Binomial Theorem

Binomial Theorem Calculator

Get detailed solutions to your math problems with our Binomial Theorem step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of binomial theorem. This solution was automatically generated by our smart calculator:

$\left(x+3\right)^5$
2

We can expand the expression $\left(x+3\right)^5$ using Newton's binomial theorem, which is a formula that allow us to find the expanded form of a binomial raised to a positive integer $n$. The formula is as follows: $\displaystyle(a\pm b)^n=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)a^{n-k}b^k=\left(\begin{matrix}n\\0\end{matrix}\right)a^n\pm\left(\begin{matrix}n\\1\end{matrix}\right)a^{n-1}b+\left(\begin{matrix}n\\2\end{matrix}\right)a^{n-2}b^2\pm\dots\pm\left(\begin{matrix}n\\n\end{matrix}\right)b^n$. The number of terms resulting from the expansion always equals $n + 1$. The coefficients $\left(\begin{matrix}n\\k\end{matrix}\right)$ are combinatorial numbers which correspond to the nth row of the Tartaglia triangle (or Pascal's triangle). In the formula, we can observe that the exponent of $a$ decreases, from $n$ to $0$, while the exponent of $b$ increases, from $0$ to $n$. If one of the binomial terms is negative, the positive and negative signs alternate.

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 3^{0}x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
3

Calculate the power $3^{0}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
4

Calculate the power $3^{1}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
5

Calculate the power $3^{2}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
6

Calculate the power $3^{3}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
7

Calculate the power $3^{4}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}$
8

Calculate the power $3^{5}$

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243x^{0}$
9

Any expression to the power of $1$ is equal to that same expression

$\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 1x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243x^{0}$
10

Any expression multiplied by $1$ is equal to itself

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243x^{0}$
11

Any expression (except $0$ and $\infty$) to the power of $0$ is equal to $1$

$\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 9x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 27x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 81x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
12

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
13

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
14

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
15

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
16

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
17

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
18

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
19

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
20

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
21

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
22

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$
23

The factorial of $1$ is

$\frac{5!}{1\cdot 1}\cdot 3x^{4}$
24

The factorial of $5$ is

$\frac{120}{1\cdot 1}\cdot 3x^{4}$
25

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}\cdot 3x^{4}$
26

Any expression divided by one ($1$) is equal to that same expression

$120\cdot 3x^{4}$
27

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
28

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
29

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
30

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
31

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
32

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$
33

The factorial of $1$ is

$\frac{5!}{1\cdot 1}\cdot 3x^{4}$
34

The factorial of $5$ is

$\frac{120}{1\cdot 1}\cdot 3x^{4}$
35

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}\cdot 3x^{4}$
36

Any expression divided by one ($1$) is equal to that same expression

$120\cdot 3x^{4}$
37

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$
38

The factorial of $2$ is

$\frac{5!}{2\cdot 1}\cdot 9x^{3}$
39

The factorial of $5$ is

$\frac{120}{2\cdot 1}\cdot 9x^{3}$
40

Any expression multiplied by $1$ is equal to itself

$\frac{120}{2}\cdot 9x^{3}$
41

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
42

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
43

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
44

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
45

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
46

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$
47

The factorial of $1$ is

$\frac{5!}{1\cdot 1}\cdot 3x^{4}$
48

The factorial of $5$ is

$\frac{120}{1\cdot 1}\cdot 3x^{4}$
49

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}\cdot 3x^{4}$
50

Any expression divided by one ($1$) is equal to that same expression

$120\cdot 3x^{4}$
51

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$
52

The factorial of $2$ is

$\frac{5!}{2\cdot 1}\cdot 9x^{3}$
53

The factorial of $5$ is

$\frac{120}{2\cdot 1}\cdot 9x^{3}$
54

Any expression multiplied by $1$ is equal to itself

$\frac{120}{2}\cdot 9x^{3}$
55

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$
56

The factorial of $3$ is

$\frac{5!}{6\cdot 1}\cdot 27x^{2}$
57

The factorial of $5$ is

$\frac{120}{6\cdot 1}\cdot 27x^{2}$
58

Any expression multiplied by $1$ is equal to itself

$\frac{120}{6}\cdot 27x^{2}$
59

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
60

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
61

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
62

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
63

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
64

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$
65

The factorial of $1$ is

$\frac{5!}{1\cdot 1}\cdot 3x^{4}$
66

The factorial of $5$ is

$\frac{120}{1\cdot 1}\cdot 3x^{4}$
67

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}\cdot 3x^{4}$
68

Any expression divided by one ($1$) is equal to that same expression

$120\cdot 3x^{4}$
69

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$
70

The factorial of $2$ is

$\frac{5!}{2\cdot 1}\cdot 9x^{3}$
71

The factorial of $5$ is

$\frac{120}{2\cdot 1}\cdot 9x^{3}$
72

Any expression multiplied by $1$ is equal to itself

$\frac{120}{2}\cdot 9x^{3}$
73

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$
74

The factorial of $3$ is

$\frac{5!}{6\cdot 1}\cdot 27x^{2}$
75

The factorial of $5$ is

$\frac{120}{6\cdot 1}\cdot 27x^{2}$
76

Any expression multiplied by $1$ is equal to itself

$\frac{120}{6}\cdot 27x^{2}$
77

Calculate the binomial coefficient $\left(\begin{matrix}5\\4\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(4!\right)\left(5-4\right)!}\cdot 81x$
78

The factorial of $4$ is

$\frac{5!}{24\cdot 1}\cdot 81x$
79

The factorial of $5$ is

$\frac{120}{24\cdot 1}\cdot 81x$
80

Any expression multiplied by $1$ is equal to itself

$\frac{120}{24}\cdot 81x$
81

Subtract the values $5$ and $-1$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(5-2\right)!}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
82

Subtract the values $5$ and $-2$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
83

Subtract the values $5$ and $-3$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
84

Subtract the values $5$ and $-4$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
85

Add the values $5$ and $0$

$\frac{5!}{\left(0!\right)\left(5!\right)}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
86

Simplify the fraction

$\frac{1}{0!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
87

Multiply the fraction by the term

$\frac{1x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
88

Any expression multiplied by $1$ is equal to itself

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 243$
89

Calculate the binomial coefficient $\left(\begin{matrix}5\\0\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}$
90

The factorial of $0$ is

$\frac{5!}{1\cdot 1}x^{5}$
91

The factorial of $5$ is

$\frac{120}{1\cdot 1}x^{5}$
92

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}x^{5}$
93

Any expression divided by one ($1$) is equal to that same expression

$120x^{5}$
94

Calculate the binomial coefficient $\left(\begin{matrix}5\\1\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(1!\right)\left(5-1\right)!}\cdot 3x^{4}$
95

The factorial of $1$ is

$\frac{5!}{1\cdot 1}\cdot 3x^{4}$
96

The factorial of $5$ is

$\frac{120}{1\cdot 1}\cdot 3x^{4}$
97

Any expression multiplied by $1$ is equal to itself

$\frac{120}{1}\cdot 3x^{4}$
98

Any expression divided by one ($1$) is equal to that same expression

$120\cdot 3x^{4}$
99

Calculate the binomial coefficient $\left(\begin{matrix}5\\2\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(2!\right)\left(5-2\right)!}\cdot 9x^{3}$
100

The factorial of $2$ is

$\frac{5!}{2\cdot 1}\cdot 9x^{3}$
101

The factorial of $5$ is

$\frac{120}{2\cdot 1}\cdot 9x^{3}$
102

Any expression multiplied by $1$ is equal to itself

$\frac{120}{2}\cdot 9x^{3}$
103

Calculate the binomial coefficient $\left(\begin{matrix}5\\3\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(3!\right)\left(5-3\right)!}\cdot 27x^{2}$
104

The factorial of $3$ is

$\frac{5!}{6\cdot 1}\cdot 27x^{2}$
105

The factorial of $5$ is

$\frac{120}{6\cdot 1}\cdot 27x^{2}$
106

Any expression multiplied by $1$ is equal to itself

$\frac{120}{6}\cdot 27x^{2}$
107

Calculate the binomial coefficient $\left(\begin{matrix}5\\4\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\frac{5!}{\left(4!\right)\left(5-4\right)!}\cdot 81x$
108

The factorial of $4$ is

$\frac{5!}{24\cdot 1}\cdot 81x$
109

The factorial of $5$ is

$\frac{120}{24\cdot 1}\cdot 81x$
110

Any expression multiplied by $1$ is equal to itself

$\frac{120}{24}\cdot 81x$
111

Calculate the binomial coefficient $\left(\begin{matrix}5\\5\end{matrix}\right)$ applying the formula: $\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}$

$\left(\frac{5!}{\left(5!\right)\left(5-5\right)!}\right)\cdot 243$
112

Simplify the fraction

$\left(\frac{1}{\left(5-5\right)!}\right)\cdot 243$
113

Subtract the values $5$ and $-5$

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243\left(5!\right)}{\left(5!\right)\left(0!\right)}$
114

Simplify the fraction

$\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
115

The factorial of $0$ is

$\frac{x^{5}}{1}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
116

The factorial of $1$ is

$\frac{x^{5}}{1}+\frac{3\left(5!\right)}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
117

The factorial of $5$ is

$\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
118

The factorial of $2$ is

$\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
119

The factorial of $5$ is

$\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
120

Multiply $1$ times $24$

$\frac{x^{5}}{1}+\frac{3\cdot 120}{24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
121

Multiply $3$ times $120$

$\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
122

Multiply $2$ times $6$

$\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{9\cdot 120}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
123

Multiply $9$ times $120$

$\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{1080}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
124

Divide $360$ by $24$

$\frac{x^{5}}{1}+15x^{4}+\frac{1080}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
125

Divide $1080$ by $12$

$\frac{x^{5}}{1}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
126

Any expression divided by one ($1$) is equal to that same expression

$x^{5}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
127

The factorial of $3$ is

$x^{5}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
128

The factorial of $5$ is

$x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}$
129

The factorial of $4$ is

$x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{24\cdot 1}x+\frac{243}{0!}$
130

The factorial of $5$ is

$x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{0!}$
131

The factorial of $0$ is

$x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}$
132

Multiply $6$ times $2$

$x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{12}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}$
133

Multiply $27$ times $120$

$x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}$
134

Multiply $24$ times $1$

$x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{81\cdot 120}{24}x+\frac{243}{1}$
135

Multiply $81$ times $120$

$x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{9720}{24}x+\frac{243}{1}$
136

Divide $3240$ by $12$

$x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{9720}{24}x+\frac{243}{1}$
137

Divide $9720$ by $24$

$x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+\frac{243}{1}$
138

Divide $243$ by $1$

$x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243$

Final answer to the problem

$x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!