Step-by-step Solution

Integral of $\frac{x^2}{\sqrt{x^2+6}}$ with respect to x

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final Answer

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|+C_0$

Step-by-step explanation

Problem to solve:

$\int\frac{x^2}{\sqrt{x^2+6}}dx$

Choose the solving method

1

We can solve the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\frac{6}{\sqrt{6}}\tan\left(\theta \right)$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\frac{6}{\sqrt{6}}\sec\left(\theta \right)^2d\theta$
3

Substituting in the original integral, we get

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\tan\left(\theta \right)^2+6}}d\theta$
4

Factor by the greatest common divisor $6$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\left(\tan\left(\theta \right)^2+1\right)}}d\theta$
5

The power of a product is equal to the product of it's factors raised to the same power

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\frac{6}{\sqrt{6}}\sqrt{\tan\left(\theta \right)^2+1}}d\theta$
6

Applying the trigonometric identity: $\tan(x)^2+1=\sec(x)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\frac{6}{\sqrt{6}}\sec\left(\theta \right)}d\theta$
7

Taking the constant ($6\sqrt{6}$) out of the integral

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\frac{6}{\sqrt{6}}\sec\left(\theta \right)}d\theta$
8

Simplify the fraction by $\sec\left(\theta \right)$

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\frac{6}{\sqrt{6}}\sec\left(\theta \right)}d\theta$
9

Take $\frac{6\sqrt{6}}{\frac{6}{\sqrt{6}}}$ out of the fraction

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\frac{6}{\sqrt{6}}\sec\left(\theta \right)}d\theta$
10

Simplifying

$6\sqrt{6}\int\frac{\sqrt{6}}{6}\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
11

The integral of a constant by a function is equal to the constant multiplied by the integral of the function

$6\sqrt{6}\cdot \frac{\sqrt{6}}{6}\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
12

Multiply $6\sqrt{6}$ times $\frac{\sqrt{6}}{6}$

$6\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
13

Apply the formula: $\int\sec\left(x\right)\tan\left(x\right)^2dx$$=\int\sec\left(x\right)^3dx-\int\sec\left(x\right)dx$, where $x=\theta $

$6\left(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta\right)$
14

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$6\left(\int\sec\left(\theta \right)^3d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
15

Rewrite $\sec\left(\theta \right)^3$ as the product of two secants

$6\left(\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
16

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$
17

First, identify $u$ and calculate $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$
18

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$
19

Solve the integral

$v=\int\sec\left(\theta \right)^2d\theta$
20

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$
21

Now replace the values of $u$, $du$ and $v$ in the last formula

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)\tan\left(\theta \right)\tan\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
22

When multiplying two powers that have the same base ($\tan\left(\theta \right)$), you can add the exponents

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
23

Apply the formula: $\int\sec\left(x\right)\tan\left(x\right)^2dx$$=\int\sec\left(x\right)^3dx-\int\sec\left(x\right)dx$, where $x=\theta $

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\left(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta\right)-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
24

Solve the product $-(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta)$

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)^3d\theta+\int\sec\left(\theta \right)d\theta-\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|\right)$
25

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)^3d\theta\right)$
26

Simplify the integral $\int\sec\left(\theta \right)^3d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)\right)$
27

Solve the product $6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)\right)$

$6\tan\left(\theta \right)\sec\left(\theta \right)-6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$
28

Solve the product $-6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$

$6\tan\left(\theta \right)\sec\left(\theta \right)-3\sin\left(\theta \right)\sec\left(\theta \right)^{2}-3\int\sec\left(\theta \right)d\theta$
29

Simplifying

$3\tan\left(\theta \right)\sec\left(\theta \right)-3\int\sec\left(\theta \right)d\theta$
30

The integral $-3\int\sec\left(\theta \right)d\theta$ results in: $-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$

$-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$
31

Gather the results of all integrals

$3\tan\left(\theta \right)\sec\left(\theta \right)-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$
32

Express the variable $\theta$ in terms of the original variable $x$

$3\left(\frac{x}{\frac{6}{\sqrt{6}}}\right)\left(\frac{\sqrt{x^2+6}}{\frac{6}{\sqrt{6}}}\right)-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$
33

Multiplying the fraction by $3$

$\frac{3x}{\frac{6}{\sqrt{6}}}\frac{\sqrt{x^2+6}}{\frac{6}{\sqrt{6}}}-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$
34

Take $\frac{3}{\frac{6}{\sqrt{6}}}$ out of the fraction

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|$
35

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|+C_0$

Final Answer

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left|\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right|+C_0$