Step-by-step Solution

Find the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$

Go!
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final Answer

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left(\sqrt{x^2+6}+x\right)+C_1$
Got a different answer? Try our new Answer Assistant!

Step-by-step Solution

Problem to solve:

$\int\frac{x^2}{\sqrt{x^2+6}}dx$

Choose the solving method

1

We can solve the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\sqrt{6}\tan\left(\theta \right)$

Differentiate both sides of the equation $x=\sqrt{6}\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant ($\sqrt{6}$) is equal to the constant times the derivative of the function

$\sqrt{6}\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$\sqrt{6}\sec\left(\theta \right)^2\frac{d}{d\theta}\left(\theta \right)$

The derivative of the linear function is equal to $1$

$\sqrt{6}\sec\left(\theta \right)^2$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\sqrt{6}\sec\left(\theta \right)^2d\theta$
3

Substituting in the original integral, we get

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\tan\left(\theta \right)^2+6}}d\theta$
4

Factor $6\tan\left(\theta \right)^2+6$ by the greatest common divisor $6$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\left(\tan\left(\theta \right)^2+1\right)}}d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int\sqrt{6}\left(\frac{\left(\sqrt{6}\right)^2\tan\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\tan\left(\theta \right)\right)^2+6}}\right)\sec\left(\theta \right)^2d\theta$

Calculate the power $\left(\sqrt{6}\right)^2$

$\int\sqrt{6}\left(\frac{6\tan\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\tan\left(\theta \right)\right)^2+6}}\right)\sec\left(\theta \right)^2d\theta$

Multiplying the fraction by $\sqrt{6}$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\tan\left(\theta \right)\right)^2+6}}d\theta$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\right)^2\tan\left(\theta \right)^2+6}}d\theta$

Calculate the power $\left(\sqrt{6}\right)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\tan\left(\theta \right)^2+6}}d\theta$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\tan\left(\theta \right)^2+1}}d\theta$

Calculate the power $\sqrt{6}$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\tan\left(\theta \right)^2+1}}d\theta$
5

The power of a product is equal to the product of it's factors raised to the same power

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\tan\left(\theta \right)^2+1}}d\theta$

Applying the trigonometric identity: $\tan(x)^2+1=\sec(x)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\sec\left(\theta \right)^2}}d\theta$

Applying the power of a power property

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}d\theta$
6

Applying the trigonometric identity: $\tan(x)^2+1=\sec(x)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}d\theta$
7

Taking the constant ($6\sqrt{6}$) out of the integral

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}d\theta$
8

Simplify the fraction $\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}$ by $\sec\left(\theta \right)$

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)}{\sqrt{6}}d\theta$
9

Rewrite the fraction $\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)}{\sqrt{6}}$

$6\sqrt{6}\int\frac{\sqrt{6}}{6}\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

The integral of a constant by a function is equal to the constant multiplied by the integral of the function

$6\sqrt{6}\cdot \frac{\sqrt{6}}{6}\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Multiply $6\sqrt{6}$ times $\frac{\sqrt{6}}{6}$

$6\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
10

The integral of a constant by a function is equal to the constant multiplied by the integral of the function

$6\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Applying the trigonometric identity: $\tan^2(\theta)=\sec(\theta)^2-1$

$6\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$

Multiplying polynomials $\sec\left(\theta \right)$ and $\sec\left(\theta \right)^2-1$

$6\int\left(\sec\left(\theta \right)\sec\left(\theta \right)^2-\sec\left(\theta \right)\right)d\theta$

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)\sec\left(\theta \right)^2$

$6\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$

The integral of the sum of two or more functions is equal to the sum of their integrals

$6\left(\int\sec\left(\theta \right)^{3}d\theta+\int-\sec\left(\theta \right)d\theta\right)$

$6\left(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta\right)$

Solve the product $6\left(\int\sec\left(\theta \right)^3d\theta-\int\sec\left(\theta \right)d\theta\right)$

$6\int\sec\left(\theta \right)^3d\theta-6\int\sec\left(\theta \right)d\theta$
11

Apply the formula: $\int\sec\left(x\right)\tan\left(x\right)^2dx$$=\int\sec\left(x\right)^3dx-\int\sec\left(x\right)dx$, where $x=\theta $

$6\int\sec\left(\theta \right)^3d\theta-6\int\sec\left(\theta \right)d\theta$

Rewrite $\sec\left(\theta \right)^3$ as the product of two secants

$6\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

First, identify $u$ and calculate $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$

Solve the integral

$v=\int\sec\left(\theta \right)^2d\theta$

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$

Now replace the values of $u$, $du$ and $v$ in the last formula

$6\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$

Multiply the single term $6$ by each term of the polynomial $\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$

$6\tan\left(\theta \right)\sec\left(\theta \right)-6\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Apply the formula: $\int\sec\left(x\right)\tan\left(x\right)^2dx$$=\int\sec\left(x\right)^3dx-\int\sec\left(x\right)dx$, where $x=\theta $

$6\tan\left(\theta \right)\sec\left(\theta \right)-6\int\sec\left(\theta \right)^3d\theta+6\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$6\tan\left(\theta \right)\sec\left(\theta \right)-6\int\sec\left(\theta \right)^3d\theta+6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Simplify the integral $\int\sec\left(\theta \right)^3d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$6\tan\left(\theta \right)\sec\left(\theta \right)-6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)+6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Solve the product $-6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$

$6\tan\left(\theta \right)\sec\left(\theta \right)-3\sin\left(\theta \right)\sec\left(\theta \right)^{2}-3\int\sec\left(\theta \right)d\theta+6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Simplifying

$3\tan\left(\theta \right)\sec\left(\theta \right)-3\int\sec\left(\theta \right)d\theta+6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$3\tan\left(\theta \right)\sec\left(\theta \right)-3\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)+6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Combining like terms $-3\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$ and $6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

$3\tan\left(\theta \right)\sec\left(\theta \right)+3\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$3\left(\frac{x}{\sqrt{6}}\right)\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}\right)+3\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

Multiplying the fraction by $3$

$\frac{3x}{\sqrt{6}}\frac{\sqrt{x^2+6}}{\sqrt{6}}+3\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

Take $\frac{3}{\sqrt{6}}$ out of the fraction

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

Simplifying

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$
12

The integral $6\int\sec\left(\theta \right)^3d\theta$ results in: $\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$
13

Gather the results of all integrals

$3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)+\frac{1}{2}x\sqrt{x^2+6}-6\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-6\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$-6\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

Simplifying

$-6\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$
14

The integral $-6\int\sec\left(\theta \right)d\theta$ results in: $-6\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$

$-6\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$
15

Gather the results of all integrals

$3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)+\frac{1}{2}x\sqrt{x^2+6}-6\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$
16

Combining like terms $3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$ and $-6\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)$

$-3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)+\frac{1}{2}x\sqrt{x^2+6}$
17

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$-3\ln\left(\frac{\sqrt{6}}{6}\left(\sqrt{x^2+6}+x\right)\right)+\frac{1}{2}x\sqrt{x^2+6}+C_0$

Applying the product rule for logarithms: $\log_b\left(MN\right)=\log_b\left(M\right)+\log_b\left(N\right)$

$-3\left(-0.89588+\ln\left(\sqrt{x^2+6}+x\right)\right)+\frac{1}{2}x\sqrt{x^2+6}+C_0$

Multiplying polynomials $-3$ and $-0.89588+\ln\left(\sqrt{x^2+6}+x\right)$

$2.687639-3\ln\left(\sqrt{x^2+6}+x\right)+\frac{1}{2}x\sqrt{x^2+6}+C_0$

We can combine and rename $2.687639+C_0$ as other constant of integration

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left(\sqrt{x^2+6}+x\right)+C_1$
18

Simplify the expression by applying logarithm properties

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left(\sqrt{x^2+6}+x\right)+C_1$

Final Answer

$\frac{1}{2}x\sqrt{x^2+6}-3\ln\left(\sqrt{x^2+6}+x\right)+C_1$
SnapXam A2
Answer Assistant

beta
Got another answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Tips on how to improve your answer: