👉 Try now NerdPal! Our new math app on iOS and Android

Find the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$

Step-by-step Solution

Go!
Math mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final Answer

$-5.999987\ln\left(\sqrt{x^2+6}+x\right)+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x+C_1$
Got another answer? Verify it here!

Step-by-step Solution

Specify the solving method

1

We can solve the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\sqrt{6}\tan\left(\theta \right)$

Differentiate both sides of the equation $x=\sqrt{6}\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant ($\sqrt{6}$) is equal to the constant times the derivative of the function

$\sqrt{6}\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$\sqrt{6}\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)^2$

The derivative of the linear function is equal to $1$

$\sqrt{6}\sec\left(\theta \right)^2$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\sqrt{6}\sec\left(\theta \right)^2d\theta$
3

Substituting in the original integral, we get

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\tan\left(\theta \right)^2+6}}d\theta$
4

Factor the polynomial $6\tan\left(\theta \right)^2+6$ by it's greatest common factor (GCF): $6$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\left(\tan\left(\theta \right)^2+1\right)}}d\theta$
5

The power of a product is equal to the product of it's factors raised to the same power

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\tan\left(\theta \right)^2+1}}d\theta$
6

Applying the trigonometric identity: $1+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\sec\left(\theta \right)^2}}d\theta$
Why is tan(x)^2+1 = sec(x)^2 ?
7

Taking the constant ($6\sqrt{6}$) out of the integral

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sqrt{\sec\left(\theta \right)^2}}d\theta$
8

Simplify $\sqrt{\sec\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}d\theta$
9

Simplify the fraction $\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}$ by $\sec\left(\theta \right)$

$6\sqrt{6}\int\frac{\tan\left(\theta \right)^2\sec\left(\theta \right)}{\sqrt{6}}d\theta$

Rewrite $\tan\left(\theta \right)^2\sec\left(\theta \right)$ in terms of sine and cosine

$6\sqrt{6}\int\frac{\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}}{\sqrt{6}}d\theta$

Simplify the fraction $\frac{\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}}{\sqrt{6}}$

$6\sqrt{6}\int\frac{89}{218}\left(\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}\right)d\theta$

Multiplying the fraction by $\frac{89}{218}$

$6\sqrt{6}\int\frac{\frac{89}{218}\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}d\theta$

Taking the constant ($\frac{89}{218}$) out of the integral

$5.999987\int\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}d\theta$
10

Simplify the expression inside the integral

$5.999987\int\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}d\theta$

Applying the trigonometric identity: $\sin\left(\theta \right)^2 = 1-\cos\left(\theta \right)^2$

$\frac{1-\cos\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}$
Why is 1 - cos(x)^2 = sin(x)^2 ?
11

Rewrite the trigonometric expression $\frac{\sin\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}$ inside the integral

$5.999987\int\frac{1-\cos\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}d\theta$
12

Expand the fraction $\frac{1-\cos\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}$ into $2$ simpler fractions with common denominator $\cos\left(\theta \right)^{3}$

$5.999987\int\left(\frac{1}{\cos\left(\theta \right)^{3}}+\frac{-\cos\left(\theta \right)^2}{\cos\left(\theta \right)^{3}}\right)d\theta$

Simplify the fraction by $\cos\left(\theta \right)$

$5.999987\int\left(\frac{1}{\cos\left(\theta \right)^{3}}+\frac{-1}{\cos\left(\theta \right)}\right)d\theta$

Applying the trigonometric identity: $\displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$

$5.999987\int\left(\frac{1}{\cos\left(\theta \right)^{3}}-\sec\left(\theta \right)\right)d\theta$
13

Simplify the resulting fractions

$5.999987\int\left(\frac{1}{\cos\left(\theta \right)^{3}}-\sec\left(\theta \right)\right)d\theta$
14

Expand the integral $\int\left(\frac{1}{\cos\left(\theta \right)^{3}}-\sec\left(\theta \right)\right)d\theta$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$5.999987\int\frac{1}{\cos\left(\theta \right)^{3}}d\theta+5.999987\int-\sec\left(\theta \right)d\theta$

Rewrite the trigonometric expression $\frac{1}{\cos\left(\theta \right)^{3}}$ inside the integral

$5.999987\int\sec\left(\theta \right)^{3}d\theta$

Rewrite $\sec\left(\theta \right)^{3}$ as the product of two secants

$5.999987\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

First, identify $u$ and calculate $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$

Solve the integral

$v=\int\sec\left(\theta \right)^2d\theta$

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$

Now replace the values of $u$, $du$ and $v$ in the last formula

$5.999987\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$

Multiply the single term $5.999987$ by each term of the polynomial $\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta\right)$

$5.999987\tan\left(\theta \right)\sec\left(\theta \right)-5.999987\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

We identify that the integral has the form $\int\tan^m(x)\sec^n(x)dx$. If $n$ is odd and $m$ is even, then we need to express everything in terms of secant, expand and integrate each function separately

$5.999987\tan\left(\theta \right)\sec\left(\theta \right)-5.999987\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$5.999987\tan\left(\theta \right)\sec\left(\theta \right)-5.999987\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$

Expand the integral $\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$5.999987\tan\left(\theta \right)\sec\left(\theta \right)-5.999987\int\sec\left(\theta \right)^{3}d\theta-5.999987\int-\sec\left(\theta \right)d\theta$

Express the variable $\theta$ in terms of the original variable $x$

$0.999998\sqrt{x^2+6}x-5.999987\int\sec\left(\theta \right)^{3}d\theta-5.999987\int-\sec\left(\theta \right)d\theta$

The integral of a function times a constant ($-1$) is equal to the constant times the integral of the function

$0.999998\sqrt{x^2+6}x-5.999987\int\sec\left(\theta \right)^{3}d\theta+5.999987\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$0.999998\sqrt{x^2+6}x-5.999987\int\sec\left(\theta \right)^{3}d\theta+5.999987\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$0.999998\sqrt{x^2+6}x-5.999987\int\sec\left(\theta \right)^{3}d\theta+5.999987\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

Simplify the expression inside the integral

$0.999998\sqrt{x^2+6}x-5.999987\int\sec\left(\theta \right)^{3}d\theta+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Simplify the integral $\int\sec\left(\theta \right)^{3}d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$0.999998\sqrt{x^2+6}x-5.999987\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Solve the product $-5.999987\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)$

$0.999998\sqrt{x^2+6}x-5.999987\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)-2.999994\int\sec\left(\theta \right)d\theta+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Simplify the fraction $-5.999987\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)$

$0.999998\sqrt{x^2+6}x-2.999994\sin\left(\theta \right)\sec\left(\theta \right)^{2}-2.999994\int\sec\left(\theta \right)d\theta+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Express the variable $\theta$ in terms of the original variable $x$

$0.999998\sqrt{x^2+6}x-\frac{1}{2}\sqrt{x^2+6}x-2.999994\int\sec\left(\theta \right)d\theta+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Combining like terms $0.999998\sqrt{x^2+6}x$ and $-\frac{1}{2}\sqrt{x^2+6}x$

$\frac{1}{2}\sqrt{x^2+6}x-2.999994\int\sec\left(\theta \right)d\theta+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$\frac{1}{2}\sqrt{x^2+6}x-2.999994\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Express the variable $\theta$ in terms of the original variable $x$

$\frac{1}{2}\sqrt{x^2+6}x-2.999994\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)+5.999987\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

Simplify the expression inside the integral

$\frac{1}{2}\sqrt{x^2+6}x+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$
15

The integral $5.999987\int\frac{1}{\cos\left(\theta \right)^{3}}d\theta$ results in: $\frac{1}{2}\sqrt{x^2+6}x+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$

$\frac{1}{2}\sqrt{x^2+6}x+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)$
16

Gather the results of all integrals

$2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x+5.999987\int-\sec\left(\theta \right)d\theta$

The integral of a function times a constant ($-1$) is equal to the constant times the integral of the function

$-5.999987\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-5.999987\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$-5.999987\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$
17

The integral $5.999987\int-\sec\left(\theta \right)d\theta$ results in: $-5.999987\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$

$-5.999987\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$
18

Gather the results of all integrals

$2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x-5.999987\ln\left(\frac{\sqrt{x^2+6}}{\sqrt{6}}+\frac{x}{\sqrt{6}}\right)$
19

The least common multiple (LCM) of a sum of algebraic fractions consists of the product of the common factors with the greatest exponent, and the uncommon factors

$L.C.M.=\sqrt{6}$
20

Combine and simplify all terms in the same fraction with common denominator $\sqrt{6}$

$2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x-5.999987\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$
21

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x-5.999987\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)+C_0$
22

Simplify the expression by applying logarithm properties

$-5.999987\ln\left(\sqrt{x^2+6}+x\right)+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x+C_1$

Final Answer

$-5.999987\ln\left(\sqrt{x^2+6}+x\right)+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x+C_1$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Solve integral of ((x^2)/((x^2+6)^0.5))dx using partial fractionsSolve integral of ((x^2)/((x^2+6)^0.5))dx using basic integralsSolve integral of ((x^2)/((x^2+6)^0.5))dx using u-substitutionSolve integral of ((x^2)/((x^2+6)^0.5))dx using integration by parts

Give us your feedback!

Function Plot

Plotting: $-5.999987\ln\left(\sqrt{x^2+6}+x\right)+2.999994\ln\left(\frac{89}{218}\sqrt{x^2+6}+\frac{89}{218}x\right)+\frac{1}{2}\sqrt{x^2+6}x+C_1$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Your Math & Physics Tutor. Powered by AI

Available 24/7, 365.

Complete step-by-step math solutions. No ads.

Includes multiple solving methods.

Support for more than 100 math topics.

Premium access on our iOS and Android apps as well.

20% discount on online tutoring.

Choose your Subscription plan:
Have a promo code?
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.
Create an Account